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Abstract—Estimating the density of the ‘urban fabric’ land
cover classes is of major importance for various urban and
regional planning activities. However, the generation of such maps
is still challenging requiring significant time and labor costs
for the per city-block analysis of very high resolution remote
sensing data. In this paper, we propose a supervised classification
approach based on deep learning towards the accurate density
estimation of build-up areas. In particular, for the training
procedure we exploit information both from maps (open street,
google, etc) and from very high resolution RGB google image
mosaics. A patch-based, deep learning model was trained against
five land cover classes. During the prediction phase the per
city-block classification procedure delivered the locations and
percentages of impervious, soil and green regions. Experimental
results and validation at two European cities i.e., Athens and
Bilbao, indicated overall accuracy rates of 95%. Results, also,
highly match with the corresponding layers from the Copernicus
Urban Atlas product.

I. INTRODUCTION

Currently a 54% of the world’s population lives in urban
areas, while projections show that urbanization combined with
the overall growth of the worlds population could add another
2.5 billion people to urban populations by 2050. Close to 90
percent of the increase is concentrated in Asia and Africa. In
Europe, 75% of the population currently lives in cities and
80% is expected to do so by 2020.

Therefore, up-to-date and comparable information on land
cover and land use are crucial to cope with emerging issues
such as urban sprawl, the decrease in urban-green areas or
the sustainable urban development in general [1], [2], [3]. An
understanding of the implications of changes in land cover
and land use is a fundamental part of planning for sustainable
development. Urban and regional planners need accurate data
in order to efficiently monitor and interpret land cover changes.

However, the generation of such maps including impervi-
ous surface or man-made object detection is not a trivial task
and a significant amount of time and labour cost is required
in order to acquire, process and analyse very high resolution
(≤2.5m) remote sensing data [4], [5], [6], [7]. An example
is Urban Atlas [8] (from the Copernicus Land Monitoring
Services) which consist of decent, pan-European comparable
land use and land cover data for Large Urban Zones (>100.000
inhabitants). Urban Atlas provides reliable, inter-comparable,
high-resolution land use maps for 305 large urban zones as
well as their surroundings for the reference years of 2006 and
2012.

Fig. 1. Urban density at the city of Athens, Greece. On the left-hand side: the
per-city block, ground truth data superimposed onto Google’s image mosaic.
On the right: the corresponding Urban Atlas Map

The motivation in this paper was to design a procedure
for urban land cover mapping which is able to exploit all the
available geoinformation including both very high resolution
images as well as geodata from e.g., open street or google
maps. In particular, based on google image mosaics and the
corresponding street maps all the city-blocks are detected
and labelled. Then, a supervised classification approach was
developed based on deep learning (DL) frameworks [9], [10]
towards the accurate, per city-block, density estimation of
build-up areas. The training procedure integrates information
both from open street or google maps, as well as from very
high resolution RGB image mosaics from google maps. The
patch-based, deep-learning model was trained against five land
cover classes of ’urban fabric’. During the prediction phase the
per city-block classification procedure delivered the locations
and percentages of impervious, soil and green regions.

The rest of the paper is organised as follows. In Section II
we present the DL architecture used and we describe the
training and testing procedure. Finally, in Sections III and IV
we present and discuss our experimental results.

II. METHODOLOGY

During the first step of the developed methodology the city-
blocks were detected and labeled with a unique number based
on the different colors of the google map image which denote
the roads (usually white, yellow), urban green (green color),
built-up areas (grey color), etc. Then a supervised classification
procedure based on the corresponding RGB image mosaics
was developed towards the detection of the main ’urban fabric’
land cover classes. These classes were then combined, during
the last processing step, towards the per city-block estimation
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Reference Data
# of pixels Building Building Shadow Vegetation Soil Vegetation Shadow Total UA (%)
Classification
Building 225465 2997 4967 3084 1226 237739 94.8
Building
Shadow

1974 8563 1958 9 2344 14848 57.7

Vegetation 2592 1353 23806 230 1471 29452 80.8
Soil 632 6 319 1393 0 2350 59.3
Vegetation
Shadow

243 693 543 27 2436 3942 61.8

Total 230906 13612 31593 4743 7477 288331
PA (%) 97.6 62.9 75.4 29.4 32.6

Overall accuracy = 90.8% Kappa coefficient = 71.6%

TABLE I. THE RESULTING CONFUSION MATRIX AFTER THE EMPLOYED CONVNET DEEP-LEARNING MODEL. THE RESULTING OVERALL ACCURACY
WAS 90.8%, WHILE THE KAPPA COEFFICIENT WAS 71.6%.

of urban density.

A. Training Procedure

The goal was to design a robust classification framework
that could effectively detect the main ’urban fabric’ land cover
classes and therefore the developed methodology is heavily
based on a comprehensive training procedure. A deep learning,
patch-based approach was employed for the classification
of very high resolution images in five different classes. In
particular, after extensive and laborious photo-interpretation,
a significant amount of ground truth data was collected.
The reference/ground truth data was collected for the classes
building, building shadow, vegetation, vegetation shadow and
soil. The selected classes represent the main per city-block land
cover categories ((i) impervious surfaces: building and building
shadow, (ii) urban green: vegetation and vegetation shadow,
(iii) soil: soil) and they were adequate for the estimation of
impervious surfaces, soil sealing and urban green.

For the training procedure a patch of 29x29 size has been
selected and fed into a DL network. Using the available ground
truth data randomly selected patches have been extracted and
formed the training dataset. For the class soil a few samples
were available therefore a data augmentation strategy with
random samplings and random transformations has been used
to add training patches. Using the google mosaic image for
the training, we exploit only the RGB information for the
classification.

Different CNN architectures exist in the literature with
deep or shallow strategies. In our case, we selected a simple
ConvNet network, with a shallow architecture both because
of the relatively small size of the selected patch and the low
computational complexity with high measured accuracies [9].

B. Simple ConvNet Network

A simple ConvNet Network consisting of 10 layers: 2
convolutional, 2 max pooling 3 transfer function and 3 fully
connected has been used for the classification. More specifi-
cally, the raw input patch of size 29x29 is given as input to
the first convolutional layer. Next comes a transfer function
layer which applies the tanh function element-wise to the
input tensor. It is followed by a max-pooling layer, which
downsamples the training dataset. The next 3 layers follow
the same pattern and result to the final fully connected layers
that produce the final outputs.

Regarding the implementation, the model was trained with
a learning rate of 1 for 36 epochs, while every 3 epochs the
learning rate was reduced to half. The momentum was set to
0.9, the weight decay parameters to 5 · 10−4 and the limit for
the Threshold layer to 10−7.

C. Testing Procedure

Regarding the testing procedure, a patch of 29x29 pixels
was extracted for every pixel and was fed into the network.
Then, each patch was classified into one of the five different
classes.

III. EXPERIMENTAL RESULTS AND EVALUATION

For the validation of the developed methodology two urban
test sites were selected i.e., city of Athens and Bilbao. Both
maps and very high resolution image mosaics (≈ 1m ground
resolution) have been acquired through google maps APIs and
were used for the training and testing procedures. In particular,
the employed RGB images cover an 7km2 area containing 254
city blocks. From these city blocks, 112 have been used for the
training and 142 for testing the framework. Approximatively,
230.000 randomly selected patches have been used per class
for the training.

Despite the important structural and spectral (due to the
different dominating materials at each city) differences, a
single training model was developed for both cities. In Table I
the confusion matrix after the classification based on the simple
ConvNet model is presented with an Overall Accuracy (OA)
at 90.8% and with a Kappa coefficient at 71.6%. The relative
lower accuracy rates reported for the classes building shadow,
vegetation shadow and soil are mainly due to misclassification
errors between the building shadow and vegetation shadow
classes as well as between the building (mainly red, soil-like,
building roofs) and the soil classes. However, the accuracy
rates for the classes building and vegetation were higher than
80%.

In Figure 2 three different sub-regions from the Bilbao
and Athens test sites are presented along with the different
classification outputs and the corresponding ground truth. After
a closer look, one can observe that the building shadow and
vegetation shadow are the main classes that were mostly
misclassified. This was most probably due to the absence
of a near-infrared spectral band. The building and vegetation
classes were detected with relative high accuracy rates.



Bilbao area # 1

(a) RGB image (b) Map

Athens area # 1

Athens area # 2

(c) Ground truth (d) Proposed Approach

Fig. 2. The classification output (d) per city-block after the application of the developed method is presented. The corresponding google image mosaics (a)
and maps (b) as well as the manually collected ground truth data (c) are presented for three different test sites in Athens and Bilbao.

After the classification procedure, the classes were aggre-
gated and based on the area that each one was covering at every
city-block, its density was calculated. In particular, the density
levels were calculated in accordance with the ‘urban fabric’
classes of Urban Atlas, namely the (i) 11100: Continuous
Urban Fabric (>80%), (ii) 11210: Discontinuous Urban Fab-
ric (50%-80%) and (iii) 11220: Discontinuous Urban Fabric
(30%-50%). In Figure 3 the estimated per city-block densities
are presented after the application of the proposed approach.
The corresponding image, ground truth and Urban Atlas map
are also presented for three test sites in Bilbao and Athens.
There are certain differences between the ground truth, the
Urban Atlas and the classification output per city-block. Even
slightly, the developed method is more close with the densities
derived from the ground truth data. Of course, one should
take into account the different acquisition dates of the datasets
employed for the Urban Atlas generation.

The quantitative evaluation between the ground truth and
the developed methodology (Table II) indicated that the ma-
jority of city-blocks belonged to the Continuous Urban Fab-
ric (>80%) class at both cities. The confusion matrix also
indicated that the lowest accuracy rates were reported for
the second class Discontinuous Urban Fabric (50%-80%). In
particular, 5 city blocks from the first class have been wrongly
classified, mainly due to the fact that most free spaces were

also covered from different artificial materials. Finally, it’s
worth mentioning that in both tested areas only three building
blocks were allocated in the vegetation class and all was
corrected classified.

Moreover, in Table III a quantitative evaluation between
the ground truth and the Urban Atlas is presented. Urban Atlas
was in accordance with the ground truth (>93%) as well as
the proposed approach with the Urban Atlas (>94%) which
implies that all products agree in most city-blocks.

Reference Data
# of blocks > 80% 50%-80% Vegetation Total UA (%)
Classification
> 80% 127 5 0 132 96.2
50%-80% 2 5 0 7 71.4
Vegetation 0 0 3 3 100
Total 129 10 3 142
PA (%) 98.5 50.0 100

Overall accuracy = 95.07% Kappa coefficient = 67.5%

TABLE II. THE RESULTING CONFUSION MATRIX BETWEEN THE
GROUND TRUTH AND THE PROPOSED APPROACH FOR THE ESTIMATED

DENSITY PER CITY-BLOCK. THE OVERALL ACCURACY WAS 95.1%, WHILE
THE KAPPA COEFFICIENT WAS 67.5%.



Bilbao area # 1

(a) RGB Image (b) Ground truth

Athens area # 1

Athens area # 2

(c) Urban Atlas (d) Proposed Approach
Fig. 3. The estimated density per city-block (d) is presented after the application of the developed method. The corresponding map from Urban Atlas (c) as
well as the manually collected ground truth data (b) and the RGB image mosaic (a) are also presented for three different test sites in Athens and Bilbao.

Ground Truth vers. Urban Atlas Proposed Appr. vers. Urban Atlas
Agree Disagree Total Agree Disagree Total

Athens 54 9 63 55 8 63
Bilbao 78 1 79 79 0 79

Percentage 93.0% 7.0% 142 94.4% 5.6% 142

TABLE III. COMPARING THE DENSITIES FROM URBAN ATLAS
AGAINST THE GROUND TRUTH AND THE PROPOSED APPROACH.

IV. CONCLUSION

In this paper, we proposed a supervised classification ap-
proach based on deep learning towards accurate density estima-
tion at build up areas. In particular, for the training procedure
we exploit information both from maps (e.g., open street or
google maps) as well as very high resolution RGB image
mosaics. The employed patch-based, deep-learning model was
trained against five land cover classes. During the prediction
phase the per city-block classification procedure delivered the
locations and percentages of impervious, soil and green re-
gions. Experimental results and validation from two European
cities i.e., Athens and Bilbao, indicated overall accuracy rates
at 95%. Results, also, highly match the corresponding ones
from the Copernicus Urban Atlas product.
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